
© 2006 Michael Eisler, Peter Corbett, Michael Kazar, Daniel S. Nydick, J. Christopher Wagner.
This paper was first published in Proceedings of FAST '07, a publication of USENIX.

Data ONTAP GX: A Scalable Storage Cluster

Michael Eisler, Peter Corbett, Michael Kazar, and Daniel S. Nydick
Network Appliance, Inc.

J. Christopher Wagner
IronPort Systems, Inc.

Abstract
Data ONTAP GX is a clustered Network Attached File server composed of a number of cooperating filers. Each
filer manages its own local file system, which consists of a number of disconnected flexible volumes. A separate
namespace infrastructure runs within the cluster, which connects the volumes into one or more namespaces by
means of internal junctions. The cluster collectively exposes a potentially large number of separate virtual servers,
each with its own independent namespace, security and administrative domain. The cluster implements a protocol
routing and translation layer which translates requests in all incoming file protocols into a single unified internal file
access protocol called SpinNP. The translated requests are then forwarded to the correct filer within the cluster for
servicing by the local file system instance. This provides data location transparency, which is used to support
transparent data migration, load balancing, mirroring for load sharing and data protection, and fault tolerance. The
cluster itself greatly simplifies the administration of a large number of filers by consolidating them into a single
system image. Results from benchmarks (over one million file operations per second on a 24 node cluster) and
customer experience demonstrate linear scaling.

1 Introduction
File storage is divided between local file systems and
network file systems. As networks have become faster
and more reliable, network file systems have become an
important aspect of most organizations’ IT
infrastructure. Typical applications include home
directories, databases, email, and scientific and
technical computing.

The widespread deployment of network file systems
has led to the development of specialized file server
solutions, commonly referred to as Network Attached
Storage (NAS). NAS systems, generically called filers,
have typically been monolithic systems, with a single or
dual controller or head, fronting a large amount of disk.
Such systems often support virtualization, allowing the
aggregated disk storage to be divided into a number of
virtual volumes, allowing the virtual volumes to be
presented through a number of virtual servers, all
hosted by the same filer hardware.

The limits of this approach are obvious. As the number
of client machines attached to networks increases, the
number of filers must increase commensurately, or the
filers will become overloaded. A filer is based on
similar hardware to a client, and so, the only way for a
filer to “keep up” is to either add more filers, or to
increase the performance of the filer. The second
option is expensive; specialized hardware solutions

seldom maintain a performance advantage over
commodity hardware.

But adding more filers has the disadvantages of being
complex to administer, disallowing opportunity for load
balancing and sharing among the filers, and requiring
the clients to mount a large number of different filer
volumes.

We decided that the best solution to this problem is to
cluster a number of individual filers to form a single file
server. For this purpose, we developed GX, which
leverages the existing ONTAP-7G architecture
[NetApp], but adds a switched virtualization layer just
below the client-facing interfaces. This allows the
storage of a large number of filers to be presented as a
single shared storage pool. The key features provided
are scalability, through the ability to add filers to the
cluster, location transparency of data within the cluster,
an extended namespace that can span multiple filers,
increased resiliency in the face of failures, and
simplified load and capacity balancing.

2 Related Work
GX draws on much previous work. It uses a remote file
system switching mechanism inspired by the Virtual
File System (VFS) [Kleiman]. GX supports both NFS

- 2 -

[Sun] and CIFS [SNIA]. GX provides many benefits
which are drawn from the Andrew File System
[Howard], and its commercial successors AFS
[Campbell] and DFS [Kazar1990]. The AFS namespace
connected multiple disparate AFS servers, each of
which stored a cell. Each cell could store multiple
volumes, and volumes were linked to each other
through internal mount points, with the linkage and
location of the volumes defined by the Volume
Location Database. AFS also provided benefits such as
location transparency, and the ability to load balance
beneath a single client mount point.

However, AFS and DFS required special client code.
The experience of AFS and DFS in trying to establish a
client footprint was one of the main observations that
motivated the use of NFS and CIFS as the client access
protocols in GX. The goal of GX was to provide the
benefits of AFS and DFS, while providing client access
through the widely deployed NFS and CIFS protocols.

The GX architecture is inspired by that of Spinnaker
Networks [Kazar2002]. Spinnaker was acquired by
Network Appliance in 2004.

Frangipani is a SAN-type file system based on a
distributed lock manager coordinating accesses from a
collection of file system clients to a shared virtual disk
[Thekkath]. We decided against building a SAN file
system because of concerns about the overhead of
distributed lock management in workloads with
read/write data sharing, or high volumes of meta-data
updates of any kind. We were also concerned about the
size of the failure domain in such an architecture, where
a bad piece of hardware could cause almost unbounded
damage.

Slice has a goal to distribute the directory operations
across many servers without partitioning the namespace
into volumes, which avoids user visible mount points,
re-partitioning volumes if volume loads grow at uneven
rates, and avoids the issue of hard link and rename
crossing volume boundaries [Anderson]. Slice
distributes every object separately, based on a hash of
its file name. Thus name lookups distribute well across
the cluster. Hard link creation, rename, and file
removal require a two phase commit across servers. We
ruled out such an approach due to the overhead of
distributed transactions.

3 Architecture
The architecture of GX addresses a number of key
challenges in clustered NAS service.

First, we wanted GX to provide horizontal scaling, so
that a cluster could grow over time to provide
additional storage and processing capabilities for the
namespace exported by GX.

Second, we wanted location independence, so that data
could be reconfigured dynamically while the system
was operating.

Third, we wanted to abstract the externally visible
notion of a “server” away from the physical hardware.
This would allow us to provide multiple virtual servers
within the clustered system, so that the actual set of
physical resources dedicated to a particular name space
can be chosen to match what is required for this name
space, and does not have be reserved in any special
fixed size units, such as entire disks or network
interfaces.

Fourth, we wanted to pay as little as possible for these
features.

3.1 Overview
The GX architecture is a high level switched
architecture, where network file system requests are
received by a file server’s front end, mapped into one or
more simple file system requests, and then transferred
over a cluster fabric to the server that stores the data.

Data is stored in volumes, which are file system sub-
trees consisting of an inode file with a root inode and a
set of directories and files contained under that root
inode. An aggregate is a collection of volumes, which
can be thought of as a virtualized UNIX disk partition.

A namespace is composed of volumes, joined together
by junctions which are entries in a volume that act as
mount points for other volumes. Section 4 discusses
namespaces and junctions in more detail.

Figure 1 shows three aggregates, containing a number
of volumes, spliced together to make a single
namespace.

- 3 -

acct

Q1 Q2 random

P1 P2

Q1 Q2
acct random P1 P2

Figure 1: Example namespace

Junctions in the root volume for this namespace (acct)
lead to volumes Q1, Q2 and random, and junctions in
random lead to volumes P1 and P2.

File servers in this model, are divided into three
components. Requests are received at virtual interfaces
(or VIFs), each with its own IP address and network
routing domain. These requests are initially processed
by the N, or networking blade, which terminates
incoming NFS and CIFS connections and maintains
protocol specific state (such as CIFS connection state).
The N-blade translates the incoming requests into
SpinNP remote procedure calls, which are transmitted
over a cluster fabric to the server responsible for the
target volume. These SpinNP file system calls are in
turn processed by the D, or data, blade on the target
server. SpinNP file system requests can be thought of
as RPC-based versions of a Vnode layer, augmented to
handle the locking complexities encountered when
simultaneously supporting the Microsoft CIFS protocol,
NFSv3, NFSv4 and iSCSI, among other protocols.
Figure 2 shows the internal structure of a two element
cluster.

There are two slowly changing cluster-wide databases
used to route requests and responses to the appropriate
modules in the cluster. First the volume location
database (VLDB) tracks both the identity of each
volume’s containing aggregate, as well as the D-blade
that is currently responsible for that aggregate. The N-
blade consults the VLDB to determine which D-blade
to send a request for a particular volume. In addition,
the D-blade occasionally needs to initiate callbacks to a
client via a particular virtual interface. Second, the VIF
manager database tracks which N-blade is currently
hosting each virtual interface. In today’s protocols,
these callbacks are typically issued in support of such
operations such as CIFS oplock revokes, NFSv4
delegation revokes and NLM asynchronous lock grants.

X

Cluster
Fabric
Switch

Client Access
(NFS or CIFS)

Virtual Interface

Fibre channel

N-Blade
• TCP termination
• Translation to
SpinNP
 protocol
• VLDB lookup

D-Blade
• Caching
• Locking

Client Access
(NFS or CIFS)

Virtual Interface

Fibre channel

N-Blade
• TCP termination
• Translation to
SpinNP
 protocol
• VLDB lookup

D-Blade
• Caching
• Locking

Figure 2: Example Cluster

Figure 3 shows three aggregates, one behind each GX
server. Each aggregate stores two volumes which
contain the junctions to produce the tree structured
namespace shown on the upper right.

Unix
workstation

Windows
desktop

UNIX
workstation

Windows
desktop

Node
1

Node
2

Node
3

acct

Q1 Q2 random

P1 P2

Q1 Q2
acct random P1 P2

Cluster
Switch

Figure 3: Overall architecture

We now walk through the details of the processing of
an operation. Assume a storage client sends a CIFS
request to filer node 2 with a file handle specifying a
file in volume P1. The N-blade on server node 2
removes the request from the queue of the CIFS
connection, and extracts the SpinNP file handle from
the CIFS state and the request. The N-blade extracts a
volume ID from the file handle and uses this ID to
index into a cached copy of the VLDB to find the ID of
the aggregate storing volume P1. Then the N-blade uses
the aggregate ID to lookup the network address of the
D-blade responsible for aggregate (node 3) and sends
one or more SpinNP requests to that addresses. The D-
blade receives the SpinNP request and executes it,
sending the response back to the originating N-blade,
which generates a CIFS response and sends the

- 4 -

response back to the client. Section 5 discusses SpinNP
in more detail.

3.2 Virtual Servers
The preceding section described the GX data
architecture, consisting of a collection of virtual
volumes distributed among a collection of aggregates
owned by different servers in a cluster, and glued
together to form a single tree-structured global name
space. Clients typically access these volumes by
contacting the server at one of several network
addresses (typically IP addresses). A virtual interface
(VIF) is a virtual network card having one or more
network addresses and a corresponding routing domain,
bound at any instant to a physical network card. Virtual
interfaces migrate to different physical network cards in
case of failures to links or servers.

This entire collection of virtual volumes accessed via a
set of virtual interfaces may be virtualized as a virtual
server. A virtual server consists of its own set of
virtual volumes, with one designated as the virtual
server root, acting as the root of the virtual server’s
private name space. A virtual server also contains its
own set of virtual interfaces, and any operation received
on a virtual server’s interface is automatically restricted
to accessing one of the virtual server’s volumes. In
effect, this provides GX with the capability to divide a
cluster’s resources into isolated sections, with each
section on its own private subnet, and with users from
that subnet limited to accessing data in their own
section, independent of any discretionary access control
lists that might exist. The alternative to virtual servers
would be to have multiple clusters.

3.3 Location Independence and
Single System Image

A fundamental goal of the GX architecture is the
aggregation of a set of servers into a cluster that appears
externally as a single large server having many volumes
and many network interfaces through which those
volumes may be accessed. A fundamental property of
these clusters is that any volume can be accessed via
any interface in the cluster, and any element can be
managed via any network interface in the cluster (a
well-defined exception is described in section 3.2).

Location independence provides the core underpinnings
for transparent and online resource reconfiguration.
Specifically, volumes can be moved dynamically
between aggregates and servers in a GX cluster, and
these move operations occur completely transparently

to the clients, moving both data and file lock state
atomically.

Similarly, the architecture allows virtual interfaces to
migrate transparently between physical network cards,
although today’s implementation of VIF migration is
not completely transparent for certain protocols: CIFS
users see a TCP connection reset that may be visible as
a very short lived server failure. This may be remedied
by migrating the CIFS TCP connection state before
doing, at least, a manual VIF failover.

The result is a clustered file system where data can be
transparently moved between nodes in a cluster, users
can be transparently moved between nodes in a cluster,
and in general, the entire system can be reconfigured
online. This level of management flexibility is required
in today’s environments where no suspensions of
access to storage are permitted, even for adding new
servers or decommissioning obsolete servers.

4 Namespace

4.1 Overview
The namespace uses ideas from the Andrew Filesystem
and AFS for constructing a namespace built from a
collection of storage volumes linked to each other in a
tree. AFS and the GX namespace share the following
properties:

 A consistent view of the namespace is provided
from any client.

 Different volumes of the namespace tree can come
from different server nodes on the network (termed
D-blades).

 Volumes can be moved among nodes without
disrupting clients or processes on the clients
holding open files of the migrated volume.

 Volumes can be replicated and replicas distributed
across the server nodes for purposes of load
balancing and enhanced data availability.

AFS and GX diverge in that the latter does not require
special purpose client software to access the namespace
or to enjoy the properties described above. Instead
existing file access mechanisms like CIFS and NFS can
be used.

While AFS maintained its namespace via pointers to
child volumes stored in the filesystem, GX uses a

- 5 -

junction table (maintained in the VLDB). The junction
table contains mounting relationships, which are
triples consisting of a parent volume, a child volume,
and a junction, which is a reference to a directory-like
file object that exists in the parent volume. The
junction, identified by its inode and generation
numbers, serves as the mount point for a child volume.
A volume, identified by a Master Data Set Identifier
(MSID), can have multiple junctions in it, each
corresponding to a mount point in the junction table. A
child volume can be a parent volume to other child
volumes. The junction table thus can be thought of as
table of directed arcs in a graph.

Some limitations of volume mounting include:

 Only the root directory of a child volume is
mounted on a parent volume's directory.

 A child volume cannot have multiple parent
volumes (i.e. there may be no more than one entry
in the junction table specifying this volume as a
child).

The former limitation exists partly out of expediency
and partly from the observation that volumes can be
very small in ONTAP GX (as is the case in ONTAP-
7G) [NetApp]. There's no need to mount subdirectories
of a volume, when one could instead break a volume
into several smaller volumes (a procedure which is
simplified via the use of zero-copy volume cloning). In
addition, the root of a volume is the obvious place to
look for a parent volume to which to ascend.

The latter limitation exists to support traversal between
a child volume and its parent volume as happens with a
UNIX “cd ..” issued from the root directory of a child
volume. Otherwise it is not clear which parent volume
to ascend to.

When an N-blade gets a request to access an object
name that is a junction, it checks to see if there is a
child volume mounted on the junction, instead of
returning an NFS file handle that contains the MSID of
the volume the junction lives on, and the fileid and
generation number of the junction. The N-blade queries
the junction table, using the MSID of the volume (the
parent), and the inode number and generation number
of the junction. If an entry is found, (and there should
be at most one entry), then the entry has the MSID of
the child volume, and the VLDB is queried with the
MSID as a key to find the D-blade in the GX cluster
that owns the child MSID.

When a D-blade gets a request to return the inode
number and generation number of the parent of the root
of a volume, it indicates to the N-blade that the root of
the volume has already been reached. This time the N-
blade needs to query the junction table using the child
volume's MSID as the key. The result of the query is
either the MSID of the parent volume, and the inode
number and generation number of the junction the child
volume is mounted on, or the result is an indication that
the client is already at the root directory, of the root
volume, of the namespace tree.

In the event of a D-blade failure, the ability to transit to
any volume on that D-blade is lost.

The goal of the namespace is to emulate a single
filesystem. However in some areas the emulation
breaks down. GX does not support renaming or hard
linking files across volumes. Other areas of break down
are described in the next two subsections.

4.2 Considerations for CIFS
Clients

CIFS supports a form of access control called Access
Control Lists (ACLs). Each file can have one ACL.
Each ACL contains one or more Access Control Entries
(ACEs). An ACE contains a user or group identifier,
and a bit mask of operations (read the file, delete the
file, write the file, etc.), specifying whether a user or
member of the group is to be allowed to perform the
operation or to be denied the operation, and some flags.
One flag is the inheritance bit. If this bit is set on a
directory, then this indicates that any file or directory
created inside the directory should inherit the ACE.

An issue is whether ACL inheritance should work
across junctions. We considered and rejected two
possibilities.

The first possibility is if the junction's parent directory
has the inheritance bit set, then the ACL should be
inherited in the child volume, even if the root directory
of the child volume does not have inheritance set.

The second possibility is if the root directory of the
child volume has the inheritance bit set (even if the
parent directory of the junction of the parent volume
does not have inheritance set) the ACLs should be
propagated from the parent volume. The ability to
dynamically reconfigure the namespace complicates
these possibilities − what do we do if a volume is
remounted under a directory with a different inheritance
value?

- 6 -

In the interest of producing the least surprise, we have
chosen to not inherit ACLs across junctions, regardless
whether the inheritance bit is set in the parent volume
or the root of the child volume.

CIFS supports a feature called "Change Notify" where a
CIFS client can register an interest in being notified
about changes to the directory or an entire tree of
directories and files. For applications it arguably makes
sense for change notify to work across junctions.
However, because this has the potential to consume
almost all cluster bandwidth, GX does not support
change notify across junctions.

Both ONTAP-7G and GX support a feature called the
security style which applies to volumes. The security
style indicates whether to use Windows (ACLs), UNIX
(mode bits), or a mix of the two for enforcing access.
As in ONTAP-7G, the security style can be assigned
per volume in GX . However if the security style is not
specified when a volume is mounted, it will inherit the
security style of its parent volume.

4.3 Considerations for NFS
Clients

NFS clients typically run on systems that expect some
conformance to UNIX semantics. One semantic used by
UNIX utilities like "cp", and "mv" is to invoke the
stat() system call on two or more files and use the
returned inode number to ensure the files are different.
Among other data, the stat() system call returns the
inode number of the specified file. Suppose "m" is
mount point, and "p" is a file in the parent volume, and
"c" is a file in the child volume. Because the child and
parent volumes are independent volumes, "p" and "c"
could very well have the same inode numbers. In that
case, "cp p m/c" would fail because the inode numbers
of the source and target are the same. We considered
and rejected using the full 64 bits of an NFS version 3
inode number to encode the MSID and inode number,
because not all clients, or applications on such clients
can cope with the upper 32 (or 33) bits of an inode
number being non-zero. Instead, we borrow the AFS
idea of computing a hashed inode number using the
file's volume's MSID and the file's inode number as
input. This computed inode number is used only for
replies to GETATTR (get attribute) requests; the NFS
file handle uses the real inode number.

We found that some NFS clients had problems when
the link count of a directory did not exactly equal the
number of child directories plus the entries for "." and

"..". This was caused by a junction in a directory not
increasing the link count. We now implement junctions
as objects that behave like directories in all ways,
except that permissions for search, read, and write are
denied to all. This way, directory properties like
increasing the link count of its parent directory are
preserved.

4.4 Snapshots
WAFL snapshot semantics continue to be supported in
GX with some ramifications for the global namespace
[Hitz]. Supporting coordinated snapshots among
volumes distributed among several D-blades would be
desirable, and theoretically possible (if difficult).
Snapshot coordination is currently not part of GX
architecture because coordinating snapshots across all
volumes of an arbitrarily-sized namespace cannot scale.

The magic “.snapshot” directory is omnipresent in GX,
but because snapshots are not coordinated, the system
denies clients the capability to navigate from a snapshot
of a parent directory into a snapshot of a child volume.
The reason is illustrated by an example. At time T a
snapshot of parent volume A is taken, at T+1, child
volume B is unmounted from A, and C is mounted
where B was, at T+2 a snapshot of C is taken, and at
T+3, the user unexpectedly encounters a snapshot of
volume C instead of a snapshot of B.

5 SpinNP
The GX cluster is connected by a family of message-
passing protocols called SpinNP. SpinNP is a layered
system that defines a session and operations layer, and
that specifies the requirements of its underlying
transport layer. SpinNP is used for all high-traffic
message passing within the cluster, both between N-
blades and D-blades, as well as between different D-
blades.

In developing SpinNP, we were motivated by the need
for a RPC protocol with a tightly integrated session
layer. We took a holistic approach to the design of
SpinNP, which gave us the ability to assign function to
the transport, session, and application layers as needed.
We were able to build security, flow control and
versioning features in from the ground up, and to design
a protocol that can be run over multiple different and
commonly available transports.

5.1 Transport Requirements
SpinNP sessions are layered over a network transport.
Any transport can be used as long as it provides a

- 7 -

connection-oriented protocol that provides reliable
delivery of completely framed messages. We built a
transport called RC, which is a simple message framing
layer over UDP. The framing is required to delimit
SpinNP messages on a byte stream protocol such as
TCP. We also implemented other transports, including
a memory-to-memory transport which is used only in
the case of local communication between two blades
which are co-located on the same cluster node. It is
also possible to implement a transport over the PCI or
other I/O buses.

Each transport provides an abstraction of one or more
connections. Connections are simply pipes through
which we can feed messages. Connections supply
resource-limited flow control at the level of individual
messages. More than one connection can be in
operation simultaneously between the same pair of
communicating entities.

The transport must be robust enough to inform the
session layer when a connection has been lost. Timely
notification of connection loss is important to speed
session recovery.

5.2 Sessions
SpinNP sessions provide: strong security based on the
GSS_API [Linn]; outer level flow control; the
capability of exactly-once message delivery; strong
major and minor versioning support; and multiple
message priority channels per session.

SpinNP operations are RPC-like, and consist of one
request message and a corresponding response message
that is returned from the receiver to the sender of the
request. SpinNP sessions support a bi-directional
request flow and corresponding response flows in the
opposite directions. Each SpinNP session is layered
over at least three connections, one each for message
priority levels low, medium and high. Low priority is
used for normal request and response traffic. Medium
priority is used for callback requests and responses.
High priority is used for normal requests that are
performed as a result of a callback. An example is the
data flushes that occur after a file delegation is revoked
by a callback.

The session is initially formed by the exchange of a
SpinNP _CREATE_SESSION request and response.
This request and response have distinguished values in
their first bytes, which allow negotiation of the overall
SpinNP protocol level. Once a mutually agreed-upon
base protocol version has been established, the
connection is authenticated by the exchange of GSS

tokens. This follows the normal GSS sequence of
security context creation (GSS_Init_Sec_Context), data
protection and/or encryption (GSS_Wrap), and context
destruction (GSS_Delete_Sec_Context). SpinNP has
session level operations for each of these GSS
commands. Session initialization also requires the
negotiation of a set of operational protocols, called
interfaces, which actually perform the operations that
implement scalable file services within a cluster. Each
interface consists of a set of operations, each defined by
a request and response message pair. One of the
primary interfaces is the file operations interface, which
is used primarily between the N-blades and D-blades to
implement network file system operations.

Each interface is separately versioned, independently of
the base protocol. The base protocol version is
negotiated during the exchange of the first two request
and response messages. If agreement is reached on a
mutually acceptable version, the session negotiation can
be completed. This establishes the content of the
message headers, as well as the content of a special set
of requests and responses, called the session operations
interface. These operations are used to perform
GSS_API session initiation, and other SpinNP session
negotiations.

The GSS_API is used not only to authenticate each
participant in the session to the other over the initial
connection, but also to authenticate each additional
connection that is bound to the session. This is
accomplished by the exchange of a pair of challenge-
response tokens over the newly established connection.
This exchange must complete before the connection can
be bound to the session.

SpinNP sessions implement request level flow control.
This limits the number of requests that can be
outstanding in any session. The flow control combines
slotted and sliding window techniques. Each session
consists of a number of channels. Each channel has a
sliding request window. Within a channel, requests are
assigned sequence numbers. If the window size is n,
the request with sequence number i+n cannot be issued
until the response has been received for all requests
with sequence number less than or equal to i. This
ensures that a number of requests can be in-flight at the
same time, allowing a high degree of concurrency.
However, the sliding window is vulnerable to a single
long-running request holding up the entire channel. To
reduce the likelihood of this happening, SpinNP allows
the creation of multiple channels for each session. Each
channel has its own sliding window, and so if one
channel becomes blocked, requests can still be sent
over another channel. The end-to-end windowing

- 8 -

allows the receiver to apply back-pressure on the
request channels.

There are three priority levels of channels in a session:
high, medium and low. There is no direct binding of
channels to particular connections, except that the
following rules are applied to select a connection on
which to send a message. Low priority requests and
responses are restricted to the low priority channels and
are sent over low priority links. Medium priority
messages are sent over the medium priority channel,
and can be sent over either the medium or low priority
connections. Similarly, high priority messages are sent
over the high priority channel, but can then be
transmitted over any of the connections, high, medium
or low priority.

Sessions implement an at-most-once semantic, and will
not tolerate lost messages from the transport layer.
Should the transport layer fail to deliver a message, the
session layer can trigger session recovery, which will
attempt to construct a new session to replace the failed
session. It is expected that the transport will retry
sending the message until it determines that it is not
possible to send the message. At this point, the
transport will inform the session layer that a message is
undeliverable, and the session will be reset.

5.3 File Operations
The most important SpinNP interface is the File
Operations interface. The requests in this interface
support the CIFS and NFS network file operations.
Incoming CIFS and NFS messages are translated by the
N-blade to SpinNP messages, which are in a common
format independent of the original source format.
SpinNP file operations support all the normal CIFS and
NFS file access operations, as well as locking
operations.

SpinNP file operations are designed to encompass the
semantics of both CIFS and NFS, including NFS
versions 2, 3 and 4. It does this without relying on an
indicator in the request of what the source protocol was.
(Such an indicator is included in each request, but is
only used for statistics gathering, quality of service
monitoring, and failure diagnosis.) This requires that
all expected responder behaviors be specified directly
in the protocol. For example, the protocol requires that
file names be accompanied by a set of flags that
indicate whether case sensitive or case insensitive
naming applies. Much of the challenge of
implementing a server is to ensure correct operation
under arbitrary source protocols without relying on the
identification of the specific source protocol. An

additional challenge is to select the correct behavior
when the semantics of two clients, using different
network file service protocols, conflict. Such conflicts
are usually resolved consistently, by conventions
favoring one or the other source protocol.

The file operations support all NFS and CIFS
semantics, including CIFS oplocks and NFSv4
delegations. To support these features and others, a set
of file callback operations is also defined. File
callbacks flow from the D-blade to the N-blade, which
relays them to a client, which in turn responds to the N-
blade, which in turn responds to the D-blade. These
callback operations are used to set the client state, for
example, to recall a file or directory delegation. Such
operations are necessary to ensure that the server
maintains control over its resources and to give the
server the ability to inform the client when it is
expected to synch cached updates.

The full set of SpinNP file operations resembles NFS,
and is listed below. With few exceptions (e.g. WATCH
is for setting up change notify, and is specific to CIFS)
NFS and CIFS requests can be handled with the same
operation. The specifics of NFS or CIFS semantics are
specified via flags and parameters in each request. E.g.
WRITE includes a flag to support CIFS called
RSRV_AT_EOF which directs the D-blade to reserve
extra disk space for the file whenever a write is done
that extends the size of the file.

Table 1 – SpinNP File Operations

NULL READDIR
ACCESS READLINK
CLOSE REMOVE
CREATE RENAME
DISCARD_CRED SCAN_MATCHING_LOCKS
DOWNGRADE SCAN_FILE
FH_TO_PATH SETATTR
FOLD_FILE SET_CRED
GETATTR SHARE
GETATTR_BULK UNLINK
GET_CRED UNSHARE
GET_PARENT WATCH
GET_ROOTFH WRITE
LINK
LOCK call back operations
LOCK_GRANTED_ACK NULL
RECLAIM_LOCKS_ACK LOCK
LOOKUP MOVE_LOCKS
MOVE_LOCKS NOTIFY
OPEN RECALL_LOCK
PREFETCH RECLAIM_LOCK
READ RETRY

While we originally planned to build a replay cache
into the SpinNP session layer, we discovered we could
achieve better end-to-end resiliency by building a

- 9 -

replay cache in the SpinNP file operations layer, and
that this can also provide the functionality required in
an NFS response cache. It proved to be simpler and
more effective to provide a single end-to-end solution
than to chain together multiple links protected by
different replay caches.

5.4 SpinNP IDL
We created a new interface description language (IDL)
for SpinNP. This IDL has features that facilitate direct
compilation of marshalling and unmarshalling code
from the SpinNP specifications. The IDL relies heavily
on two variable structures. The first is the switch,
which selects variable fields from one of several
alternatives. The switch is comparable to a C union;
however, the selection of a branch is explicitly
determined by a discriminator which is the first element
of the switch construct. The total size required by a
switch is determined by the selected branch, not by the
size of the largest possible branch. The other is the
collection, which can select any number of variable
fields, specifying which fields are selected by a bitmap
specification which appears at the beginning of the
collection.

Examples of a switch and a collection from the SpinNP
file operations specification are:

 struct fileop_req_msg_body_t {
 src_protocol_t src_protocol;
 fileop_request_flags_t fileop_flags;
 cred_t cred;
 switch (fileop_proc_num_t proc) {
 case NULL_FILEOP:
 null_fileop_req_t null_fileop;
 case ACCESS:
 access_req_t access;
 …
 } s;
 };

 collection file_attr_t
 (file_attr_types_t fa_type) {
 case FA_CHANGE:
 uint64_t fa_change;
 case FA_SIZE:
 uint64_t fa_size;
 …
 };
The SpinNP IDL is strongly typed, which facilitates
compilation of code directly from the specification. We
developed an IDL compiler to build C, C++, Perl and
Ethereal code all from the same input file, which is the
written specification of the interface. Having an exact
match between the protocol specification and the code,
including Ethereal descriptions, significantly sped
development [Lamping].

One of the most important features of the SpinNP IDL
is its strong support for versioning. It is possible to
annotate a single copy of a SpinNP interface
specification document so that multiple versions of the
protocol can be specified by the same document. This
gives a clear indication of the development of the
protocol, and ties directly into the interface compiler,
which generates marshalling and unmarshalling code
that is aware of the differing contents of each version.

6 System Management
System management in the ONTAP GX system is
responsible for maintaining the illusion that a GX
cluster is a single system, even as new servers join the
cluster, old servers are removed from the cluster, data is
migrated between aggregates, and network addresses
migrate between physical network cards.

Management is also responsible for ensuring that a
large cluster hides the failures of internal components,
so as to give the appearance not only of a
reconfigurable cluster, but a cluster that never stops
providing service.

The rest of this section describes the details of GX
system management.

6.1 Replicated Database
The heart of the system management software is the
replicated database, RDB. While RDB (not to be
confused with Oracle’s RDB) is mostly a new design, it
uses some ideas from the "ubik" library used by AFS.

Databases built atop RDB store all cluster wide
configuration information, including the location of all
the cluster’s virtual and physical resources, and the
state of any long-running tasks that need to survive the
failure of any given node. Each replica of an RDB
database is guaranteed to be equivalent.

RDB provides two significant types of functionality.

First, it provides an election mechanism, used to elect a
coordinator for updates to the underlying database. All
updates to the database are funneled through this
elected master, allowing a relatively straightforward
implementation of the database. In addition, the elected
master can perform application specific tasks that
require at most a single instance to run successfully.
For example, the elected master for the virtual interface
manager also runs the single instance of the task that
moves virtual interfaces between physical network
cards in the event of a link or node failure in the cluster.

- 10 -

Because a new election is performed after a node
failure, RDB can keep a database application running in
the face of multiple node failures.

Second, RDB provides a transactional database facility
allowing structured records to be atomically added to
any system management databases. RDB databases are
replicated among a set of machines in the cluster
(referred to as a “ring”). Currently, all machines in the
cluster are in the RDB ring, and updates can be
performed to the database as long as a majority of the
servers in the ring are operational. A proper majority is
required to unambiguously resolve the case where a
network partitions. As RDB transactions are created,
they contact the master for an (epoch, transaction ID)
pair. The transaction ID is essentially a transaction
count since the last time the cluster changed
masters. The epoch is a sequence number of the
number of times the master changed. Thus, by sorting
on epoch and then ID, we get a global ordering of
transactions in a cluster.

GX and RDB do not guarantee that the state of a
database will be the same for the duration of an
operation on a cluster. For example if a volume is one
D-blade when a CIFS request arrives to file on the
volume, the volume could move when the N-blade
issues a SPINNP request. The N-blade would get an
error indicating the volume has moved, and re-consult
RDB for the volume’s new D-blade.

A number of the databases built on top of RDB are
discussed below.

6.2 Volume Location Database
The volume location database (VLDB) is an RDB
replicated database. The VLDB stores a number of
tables used by N-blades and the system management
processes to locate – in several steps - the D-blade
corresponding to a particular volume. First, the volume
is mapped to the aggregate that holds the volume.
Second, because ownership of entire aggregates can be
passed from one system to another, as in the case of
system failure, the aggregate ID is mapped to a D-blade
ID. Third, the D-blade ID is mapped to its network
addresses via another RDB-based database, part of the
VIF manager, described below. In addition, if a
junction is encountered, the N-blade consults the
junction table (kept in RDB, as described in section 4),
to find the mounted child volume. Note that all of these
mappings are composed and cached in the N-blade’s
memory, so that the results of all four lookups are
typically available after a single hash table lookup.

The contents of each of these tables change during
certain operations. When a volume is moved between
servers, or between aggregates on the same server, the
volume is first moved, and at the very end, the VLDB is
updated to indicate that the volume has a new home
aggregate. If a server in a storage failover partnership
(where two D-blades share access to same set of disks
and can takeover from each other in event of failure)
fails, the surviving server updates the VLDB’s
aggregate to D-blade mapping, so that all of the N-
blades in the system know where to find the aggregate.
And if a system administrator changes the network
address of an N-blade or D-blade, the blade’s cluster IP
address set is updated in the VIF manager’s database as
well.

6.3 Virtual Interface Location
Database

The Virtual Interface (VIF) location database is
managed by an active RDB process called the Virtual
Interface manager (the VIF manager). The VIF
manager is responsible for tracking which virtual
network interfaces are associated with which physical
network cards in the cluster, and ensuring that, should a
server fail, that the IP addresses associated with the
failed VIF are moved to an acceptable backup network
card.

It is obviously important − regardless of what type of
failures occur − that a given VIF is exported by no
more than one physical network card at any instant. To
provide this guarantee, VIFs are divided into two
classes, fixed VIFs, which never migrate to other
systems, even upon link or host failure, and moveable
VIFs, which can be moved between servers in a cluster.
If a cluster loses more than half of its servers, the RDB
database will be unable to elect a master, and every VIF
manager will see, after a small timeout, that it is no
longer in contact with the RDB master for this database.
When this occurs, all moveable VIFs are torn down,
since the VIF manager can not distinguish between a
majority of the servers in a cluster being down, and a
network partition, where the master VIF manager
process is simply no longer reachable from the local
VIF manager. In the latter case, however, the VIF
manager will likely reassign the moveable VIFs to
another system, and to avoid having a cluster with
duplicate IP addresses from different ports, a VIF
manager that can’t contact the VIF manager RDB
master must tear down its moveable VIFs. Because
fixed VIFs can never migrate to other servers, these
VIFs can continue operation even after loss of contact
with the RDB master, and indeed, this is the sole reason

- 11 -

for the distinction. Of course, it is very rare for a
cluster to lose more than half of its servers; typical
failure modes are single server failures and network
partitions, where a majority of servers remain in contact
with each other.

6.4 System Management
Framework

The system management framework provides
administrative interfaces to the cluster. It is based upon
the eponymously named SMF from Marconi
Corporation. The system management framework
generates a web user interface, command line interface
and SNMP tables based upon a set of tables provided as
input.

The commands invoked by this framework update
configuration state stored in RDB, and thus mirrored to
all servers in the cluster.

6.5 Job Controller
The job controller module is a part of the system
management framework that provides support for long
running operations that need to be restarted or cleaned
up after a server failure.

The job controller provides RDB-based stable storage
to keep track of the progress of a job. For example, a
volume move operation is a complex multi-step
operation with significant temporary state that must be
cleaned up in the event of an error. A volume move
begins by creating a volume on the destination server
and creating a snapshot at the source server. The
contents of the snapshot are then propagated to the
empty volume at the destination. The snapshot
propagation cycle is repeated several times and finally
the VLDB is updated to point to the volume’s new
location. With this implementation, it is clear that if a
crash occurs during the move, significant clean up must
be performed before the operation can be restarted. The
job controller provides a straightforward mechanism to
ensure that the cleanup operations are invoked and the
job restarted.

7 False Starts
The original design of junctions included the MSID of
the child volume. This would have complicated data
protection logic. For example, a volume might be
backed up, and then the volume or subset thereof
restored in a different place in namespace. Without
additional logic, the restored volume would contain

junctions pointing to child volumes that existed in other
parts of the namespace.

The SPINNP protocol conveys semantics in a file
access protocol independent manner. In most cases, the
cost of this generality is nominal. However, when the
D-blade converted READDIR results from WAFL to
SPINNP, and the N-blade converted SPINNP
READDIR results to NFS READDIR results, the CPU
overhead was significant. We extended SPINNP to
support NFS formatted READDIR results, and gained
about 5% throughput using the benchmark described in
the next section.

8 Performance

8.1 Overview
The system's performance characteristics derive from
the division of the file service process into separate
protocol termination and disk service modules (the N-
blade and D-blade modules, respectively). As
described in section 3.1, the high performance path
consists of client requests traversing an N-blade routing
across the cluster network and terminating at the
appropriate D-blade (as illustrated in Figure 2).

The resources that drive performance include the
clients’ networks, N-blade CPU and memory
bandwidth, cluster network, D-blade CPU and memory
bandwidth, and disk bandwidth. For typical NAS access
patterns, we find the CPU balances across the N- and
D-blades. A zero-copy networking stack removes the
memory bandwidth bottleneck. Disk subsystem delays
are ameliorated by adequate memory cache, including
NVRAM to minimize latency of writes, on the D-blade.

8.2 Scaling
From a data traffic perspective, each N-blade is acting
as no more than a switch to one of several other D-
blades, which simplifies the analysis of the scaling
limits of GX.

The performance of a node in a cluster (in operations
per second) will be:

operationsremoteofeperformanc

operationslocalofeperformanc

Where performance_of_local_operations is the
performance of operations received by an N-blade that
go to the D-blade that exists on the same node, and
performance_of_remote_operations is the
performance of operations received by the N-blade that

- 12 -

go to D-blades that are not one the same node as the N-
blade.

Assuming each N-blade receives an equal share of load
from external clients, and assuming each N-blade
evenly switches its received load to each D-blade, then
among the D-blades, each D-blade is processing the
same load. Let P be the performance of a single node
cluster. Then in an N node
cluster NPoperationslocalofeperformanc /___ ,
and ENNPoperationsremoteofeperformanc /)1(___ ,
where E is the performance efficiency of remote
operations. Thus the expected performance of a cluster
of N nodes is:

0)N(For

11

1
1-

)(_clustererformanceexpected_p

ENP

ENPPE
N

N
P

N

P
N

N

8.2.1 Scaling Results

To measure scaling, we used the SPEC SFS91_R1 V3.0
benchmark* to generate a standard workload of NFS
(version 3) operations/second [Capps]. We present SFS
numbers, because the SFS workload has a mix of I/O
and metadata operations (both modifying and non-
modifying) and is derived from some real customer
workloads. SFS has uniform access rules that require
no partitioning of data among the devices that comprise
the system under test. Thus the SFS matches the
assumptions listed in the previous section.

We rarely run large cluster performance benchmarks
because of the labor and capital costs and because
we’ve found that setting up a two-node cluster, and
configuring the benchmark to direct 100% of each N-
blade’s SpinNP traffic to the other (remote) D-blade is
a sufficient predictor of how the large cluster will scale.
As a result, we have just two large cluster figures to
offer.

On a single mid range cluster node we achieved about
20,900 operations/second. On the two node “100%
remote” cluster we achieved about 17,900
operations/second. Note that neither of these runs were
compliant from SPEC’s run rules, because the goal was
to determine the maximum throughput, not to produce a

*

SPEC TM and the benchmark name SPECsfs97_R1 TM are
registered trademarks of the Standard Performance Evaluation
Corporation. For the latest SPECsfs97_R1 benchmark results visit
www.spec.org (or more specifically: www.spec.org/osg/sfs97_R1).

compliant run. Thus, fewer than the required 10 “load
points” were attempted with each single node run (see
page 55 of [SPEC]). From the single node and “100%
remote” runs we derive an expected efficiency of
85.6%. A 20 node cluster achieved about 318,000
operations/second versus an
expected_performance_cluster(20) value of 360,000
operations/second. We did not have the same number of
disk drives per node in the 20 node cluster as in the one
and two node cluster, and believe that accounts for the
discrepancy. We did not re-run with more drives
because we were aiming for a much higher number.

Using our “high end” cluster node, a 24 node cluster
configuration measured 1,032,461 SPECsfs97_R1.v3
operations per second, (with a corresponding overall
response time of 1.53 milliseconds; for a definition of
overall response time, see pages 55-56 of [SPEC]).
Each node had three one gigabit/second Ethernet
controllers, one for handling client traffic, two for the
cluster interconnect. We do not have single node and
100% remote two cluster node numbers for the same
software version on the high end node. However,
several months after the 24 node run was published at
SPEC’s web site, we measured the high end single node
at about 55,000 operations/second, and each node of the
100% remote two-node cluster at about 41,000
operations/second per node. The expected efficiency is
about 75%, and expected_performance_cluster(24) =
1,003,750 or below 2.8% of actual results.

8.3 Load Balancing
In any collection of systems intended to service a
common pool of clients, balancing load across the
collection is an important consideration. We discuss
two techniques used to address the problem.

8.3.1 Rebalancing Load
A fallacy of the previous section is the assumption that
loads to the cluster or inside the cluster will be
balanced. Because hot spots are a reality, GX offers two
axes for balancing load.

The first axis is the ability to transparently migrate
volumes among D-blades. With this capability, a given
D-blade, and indeed a given set of disks, need not be a
hot spot. Since volumes can be made arbitrarily small
(while still being dynamically expandable), then,
subject to the maximum file size needs of the
application, one can create many small volumes that
can be independently moved around the cluster as
frequently as needed. The smaller the average volume
size, the faster it can be moved in reaction to a load

- 13 -

imbalance and the easier to find a D-blade with
sufficient spare cycles to service it.

The second axis is the ability to transparently migrate
virtual network interfaces (VIFs) from one N-blade to
another. The more VIFs a cluster has, the easier it is
balance load across N-blades. Each N-blade has
multiple VIFs, perhaps even multiple VIFs that refer to
the same namespace. As the number of VIFs
approaches the number of external clients, or the even
the number of unique client source network addresses
(for clients with multiple interfaces), the flexibility to
respond to clients that dominate the capacity of a single
N-blade improves. The clients that are using a VIF on
an N-blade can be migrated by moving the VIF to an N-
blade that has less load.

8.3.2 Load Balancing Mirrors
The root volume of a namespace, if not mirrored,
becomes a performance bottleneck even if the traffic is
mostly LOOKUP operations. To prevent the D-blade
that holds the root volume of the namespace from being
a bottleneck, a best practice for GX is to have a read-
only load balancing (LB) mirror of the root volume of
the namespace on each D-blade of the cluster. Each
mirror is created via an asynchronous volume
SnapMirror operation, which is similar to the
asynchronous VSM feature in ONTAP-7G [Patterson].
This way, any read-only external client request (CIFS,
NFS, etc.) that accesses the root volume can be serviced
from any D-blade. Since external client requests arrive
at N-blades, and since each N-blade will tend to have a
local D-blade on the same node, the external request
can be serviced locally, rather than being serviced by a
D-blade that is on another node.

The set of load balancing mirrors, plus the writeable
master volume, is collectively called a volume family.
Each member of a volume family has a unique data set
identifier (DSID), but each member shares the same
MSID. This way, NFS requests can be routed to any
available load balancing mirror for an MSID that
appears in the request's NFS filehandle.

If a volume is a load balancing mirror, clients are
permitted to access and modify the writeable master,
but only if the access path is prefixed by the component
"/.admin". Note that whether a volume in the path has a
load balancing mirror is immaterial; the writeable
version of the volume is always accessed. The ".admin"
component is not quite a magic directory like WAFL's
".snapshot":

 It only appears at the root of the namespace.

 For NFS, only mount operations see it; NFS file
and lock operations do not.

Thus if an NFS client mounts "/", and then tries to "cd"
to ".admin" the LOOKUP will fail. Whereas, if the NFS
client mounts a path starting with "/.admin", all access
will be via the writeable masters for each volume
family. GX accomplishes this by using one bit in the
NFS file handle to indicate whether the writeable tree
prefixed by "/.admin" is to be used or not.

Even though ".admin" appears at the root of the
namespace this does not mean only the root volume in a
namespace can have load balancing mirrors. Any
volume can have load balancing mirrors. The writeable
master of a volume family is always reachable by a path
that starts with "/.admin".

If a writeable master is modified, a client accessing the
volume through the normal path will not see the update
until the system administrator directs the propagation of
the updates to the load balancing mirrors.

8.4 Cluster Expansion
Ultimately, even with a perfectly balanced load, the
aggregate load can exceed the cluster's capabilities. GX
allows one to add nodes to the cluster, and thus provide
new, idle places, to which to migrate load.

Nonetheless, expansion and migration will not suffice
for all types of loads. A single volume can potentially
experience more demand than the load capability of a
single D-blade. A future version of GX will allow
volumes to stripe across D-blades.

The problem of a single client outstripping an N-blade,
or an N-blade's physical network interfaces is harder to
solve, and ultimately requires external clients both
capable of network trunking, and knowing the striping
in the case of striped volumes.

9 Experiences with GX
We summarize the experiences of three customers who
use GX today.

The first customer – a provider of computer generated
special effects for motion pictures - found that GX and
its predecessor from Spinnaker provided the only
storage solution capable of supporting its rendering
load. Via the transparent volume move feature, the
customer rebalanced storage usage across its GX nodes,

- 14 -

and achieved average storage capacity utilization of
nearly 90%, adding storage as needed.

The second customer is a supercomputing center
supporting the information technology needs of
scientists and other academic researchers. The customer
uses a six node GX cluster for storing results of
workloads and for user home directories with data
consisting of mainly small files. The cluster handles
bursts of data of up to 600 megabytes/second of mostly
NFS traffic with some CIFS.

The third customer is a semiconductor manufacturer
with a four node cluster. A single attached client can
achieve 250 megabytes/second reading or writing, and
with a 75/25 % mix of read and write, a single client
achieves 650 megabytes/second. From 224 clients, an
aggregate 800 megabytes/second write speed was
measured, and aggregate gigabyte/second read (direct
I/O) speed was seen, and using the 75/25 % mix 1.2
gigabytes/second read/write speed was achieved.

10 Conclusions
Data ONTAP GX provides many of the best features of
previous scalable namespace file servers. It does this
through widely deployed network file system protocols,
including NFS and CIFS, avoiding changes to client
software. The architecture translates file access
requests to a common backend protocol that is used for
all high-traffic communication within the cluster. This
simplifies the implementation of the backend data
server modules. The entire cluster is administered
through a single interface, and administration is
implemented through a number of cluster services.
Performance scalability is linear, achieving a rate of
over one million NFS operations per second on a 24
node cluster.

11 Acknowledgements
We thank Rich Sanzi, Darren Sawyer, Margo Seltzer,
and five anonymous reviewers (provided by USENIX)
for their constructive critiques of several drafts of this
paper; and Dennis Chapman and Tianyu Jiang for
information on customer experiences.

12 References
[Anderson] Anderson, D. et al, “Interposed Request

Routing for Scalable Network Storage ACM
Transactions on Computer Systems, vol 20, no 1,
Feb 2002

[Campbell] Campbell, R., “Managing AFS: Andrew
File System,” ISBN 0-13-802729-3, 1998.

[Capps] Capps, D., “What’s new in SFS 3.0”, NFS
Conference, 2001.

[Hitz] Hitz, D. et al, “File System Design for an NFS
File Server Appliance,” USENIX Conference
Proceedings, 1994.

[Howard] Howard, J. et al, “Scale and Performance in a
Distributed File System,” ACM Transactions on
Computer Systems, Vol. 6, No. 1, 1988.

[Kazar1990] Kazar, M. et al, “DEcorum File System
Architectural Overview,” USENIX Conference
Proceedings, 1990.

[Kazar2002] Kazar, M., “High Performance and
Distributed NAS Server Architecture for Scalable
and Global NFS file systems,” NFS Industry
Conference, 2002.

[Kleiman] Kleiman, S., "Vnodes: An Architecture for
Multiple File System Types in UNIX,"
Proceedings of the USENIX Conference, 1986.

[Lamping] Lamping, U. et al, “Ethereal User’s Guide,”
http://www.ethereal.com, 2005.

[Linn] Linn, J., “Generic Security Service Application
Program Interface Version 2, Update 1”, RFC
2743, Internet Engineering Task Force, 2000.

[NetApp] Network Appliance, Inc., “Introduction to
Data ONTAPTM 7G,” TR 3356, 2005.

[Neuman] Neuman C., “The Kerberos Network
Authentication Service (V5)”, RFC 4120, Internet
Engineering Task Force, 2005.

[Patterson] Patterson, H. et al, “SnapMirror®: File
System Based Asynchronous Mirroring for
Disaster Recovery,” USENIX Conference on File
and Storage Technologies Proceedings, 2002.

[SPEC] Standard Performance Evaluation Corporation,
“SFS 3.0 Documentation Version 1.1,” 2001.

[SNIA] “Common Internet File System Technical
Reference,” Storage Networking Industry
Association, 2002.

[Sun] Sun Microsystems, “NFS: Network File System
Protocol Specification,” RFC 1094, Internet
Engineering Task Force, 1989.

[Thekkath] Thekkath, C. et al, “Frangipani: a scalable
distributed file system,” Proceedings of the
Sixteenth ACM Symposium on Operating Systems
Principles, 1997.

