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Abstract
Data ONTAP GX is a clustered Network Attached File server composed of a number of cooperating filers.  Each
filer manages its own local file system, which consists of a number of disconnected flexible volumes.  A separate 
namespace infrastructure runs within the cluster, which connects the volumes into one or more namespaces by 
means of internal junctions.  The cluster collectively exposes a potentially large number of separate virtual servers, 
each with its own independent namespace, security and administrative domain.  The cluster implements a protocol 
routing and translation layer which translates requests in all incoming file protocols into a single unified internal file 
access protocol called SpinNP.  The translated requests are then forwarded to the correct filer within the cluster for 
servicing by the local file system instance.  This provides data location transparency, which is used to support 
transparent data migration, load balancing, mirroring for load sharing and data protection, and fault tolerance.  The 
cluster itself greatly simplifies the administration of a large number of filers by consolidating them into a single 
system image.  Results from benchmarks (over one million file operations per second on a 24 node cluster) and 
customer experience demonstrate linear scaling.

1 Introduction
File storage is divided between local file systems and 
network file systems.  As networks have become faster 
and more reliable, network file systems have become an 
important aspect of most organizations’ IT 
infrastructure.  Typical applications include home 
directories, databases, email, and scientific and 
technical computing.

The widespread deployment of network file systems 
has led to the development of specialized file server 
solutions, commonly referred to as Network Attached
Storage (NAS).  NAS systems, generically called filers, 
have typically been monolithic systems, with a single or 
dual controller or head, fronting a large amount of disk.  
Such systems often support virtualization, allowing the 
aggregated disk storage to be divided into a number of 
virtual volumes, allowing the virtual volumes to be 
presented through a number of virtual servers, all 
hosted by the same filer hardware.

The limits of this approach are obvious.  As the number 
of client machines attached to networks increases, the 
number of filers must increase commensurately, or the 
filers will become overloaded.  A filer is based on 
similar hardware to a client, and so, the only way for a
filer to “keep up” is to either add more filers, or to
increase the performance of the filer.  The second 
option is expensive; specialized hardware solutions 

seldom maintain a performance advantage over 
commodity hardware.

But adding more filers has the disadvantages of being 
complex to administer, disallowing opportunity for load 
balancing and sharing among the filers, and requiring 
the clients to mount a large number of different filer
volumes.

We decided that the best solution to this problem is to 
cluster a number of individual filers to form a single file 
server.  For this purpose, we developed GX, which 
leverages the existing ONTAP-7G architecture
[NetApp], but adds a switched virtualization layer just 
below the client-facing interfaces.  This allows the 
storage of a large number of filers to be presented as a 
single shared storage pool.  The key features provided 
are scalability, through the ability to add filers to the 
cluster, location transparency of data within the cluster, 
an extended namespace that can span multiple filers, 
increased resiliency in the face of failures, and 
simplified load and capacity balancing.

2 Related Work
GX draws on much previous work. It uses a remote file 
system switching mechanism inspired by the Virtual 
File System (VFS) [Kleiman].  GX supports both NFS 
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[Sun] and CIFS [SNIA]. GX provides many benefits 
which are drawn from the Andrew File System 
[Howard], and its commercial successors AFS 
[Campbell] and DFS [Kazar1990]. The AFS namespace 
connected multiple disparate AFS servers, each of 
which stored a cell.  Each cell could store multiple 
volumes, and volumes were linked to each other 
through internal mount points, with the linkage and 
location of the volumes defined by the Volume 
Location Database.  AFS also provided benefits such as
location transparency, and the ability to load balance 
beneath a single client mount point.

However, AFS and DFS required special client code.  
The experience of AFS and DFS in trying to establish a 
client footprint was one of the main observations that 
motivated the use of NFS and CIFS as the client access 
protocols in GX. The goal of GX was to provide the 
benefits of AFS and DFS, while providing client access 
through the widely deployed NFS and CIFS protocols.

The GX architecture is inspired by that of Spinnaker 
Networks [Kazar2002]. Spinnaker was acquired by 
Network Appliance in 2004.

Frangipani is a SAN-type file system based on a 
distributed lock manager coordinating accesses from a 
collection of file system clients to a shared virtual disk
[Thekkath].  We decided against building a SAN file 
system because of concerns about the overhead of 
distributed lock management in workloads with 
read/write data sharing, or high volumes of meta-data 
updates of any kind.  We were also concerned about the 
size of the failure domain in such an architecture, where 
a bad piece of hardware could cause almost unbounded 
damage.

Slice has a goal to distribute the directory operations 
across many servers without partitioning the namespace 
into volumes, which avoids user visible mount points, 
re-partitioning volumes if volume loads grow at uneven 
rates, and avoids the issue of hard link and rename 
crossing volume boundaries [Anderson]. Slice 
distributes every object separately, based on a hash of 
its file name.  Thus name lookups distribute well across 
the cluster.  Hard link creation, rename, and file 
removal require a two phase commit across servers. We 
ruled out such an approach due to the overhead of 
distributed transactions.

3 Architecture
The architecture of GX addresses a number of key
challenges in clustered NAS service.

First, we wanted GX to provide horizontal scaling, so 
that a cluster could grow over time to provide 
additional storage and processing capabilities for the 
namespace exported by GX.

Second, we wanted location independence, so that data 
could be reconfigured dynamically while the system 
was operating.

Third, we wanted to abstract the externally visible 
notion of a “server” away from the physical hardware. 
This would allow us to provide multiple virtual servers 
within the clustered system, so that the actual set of 
physical resources dedicated to a particular name space 
can be chosen to match what is required for this name 
space, and does not have be reserved in any special 
fixed size units, such as entire disks or network 
interfaces.

Fourth, we wanted to pay as little as possible for these 
features.

3.1 Overview
The GX architecture is a high level switched 
architecture, where network file system requests are 
received by a file server’s front end, mapped into one or 
more simple file system requests, and then transferred 
over a cluster fabric to the server that stores the data.

Data is stored in volumes, which are file system sub-
trees consisting of an inode file with a root inode and a 
set of directories and files contained under that root 
inode.  An aggregate is a collection of volumes, which 
can be thought of as a virtualized UNIX disk partition.

A namespace is composed of volumes, joined together 
by junctions which are entries in a volume that act as 
mount points for other volumes. Section 4 discusses 
namespaces and junctions in more detail.

Figure 1 shows three aggregates, containing a number 
of volumes, spliced together to make a single 
namespace.
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Figure 1: Example namespace

Junctions in the root volume for this namespace (acct) 
lead to volumes Q1, Q2 and random, and junctions in 
random lead to volumes P1 and P2.

File servers in this model, are divided into three 
components.  Requests are received at virtual interfaces 
(or VIFs), each with its own IP address and network 
routing domain.  These requests are initially processed 
by the N, or networking blade, which terminates 
incoming NFS and CIFS connections and maintains 
protocol specific state (such as CIFS connection state).  
The N-blade translates the incoming requests into 
SpinNP remote procedure calls, which are transmitted 
over a cluster fabric to the server responsible for the 
target volume.  These SpinNP file system calls are in 
turn processed by the D, or data, blade on the target 
server.  SpinNP file system requests can be thought of 
as RPC-based versions of a Vnode layer, augmented to 
handle the locking complexities encountered when 
simultaneously supporting the Microsoft CIFS protocol, 
NFSv3, NFSv4 and iSCSI, among other protocols.
Figure 2 shows the internal structure of a two element 
cluster.

There are two slowly changing cluster-wide databases 
used to route requests and responses to the appropriate 
modules in the cluster.  First the volume location 
database (VLDB) tracks both the identity of each 
volume’s containing aggregate, as well as the D-blade
that is currently responsible for that aggregate.  The N-
blade consults the VLDB to determine which D-blade
to send a request for a particular volume.  In addition, 
the D-blade occasionally needs to initiate callbacks to a 
client via a particular virtual interface. Second, the VIF 
manager database tracks which N-blade is currently 
hosting each virtual interface.  In today’s protocols, 
these callbacks are typically issued in support of such 
operations such as CIFS oplock revokes, NFSv4 
delegation revokes and NLM asynchronous lock grants.
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Figure 3 shows three aggregates, one behind each GX
server.  Each aggregate stores two volumes which 
contain the junctions to produce the tree structured 
namespace shown on the upper right.
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Figure 3: Overall architecture

We now walk through the details of the processing of 
an operation.  Assume a storage client sends a CIFS 
request to filer node 2 with a file handle specifying a 
file in volume P1.   The N-blade on server node 2 
removes the request from the queue of the CIFS 
connection, and extracts the SpinNP file handle from 
the CIFS state and the request.  The N-blade extracts a 
volume ID from the file handle and uses this ID to 
index into a cached copy of the VLDB to find the ID of 
the aggregate storing volume P1. Then the N-blade uses 
the aggregate ID to lookup the network address of the 
D-blade responsible for aggregate (node 3) and sends 
one or more SpinNP requests to that addresses. The D-
blade receives the SpinNP request and executes it, 
sending the response back to the originating N-blade, 
which generates a CIFS response and sends the 
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response back to the client. Section 5 discusses SpinNP
in more detail.

3.2 Virtual Servers
The preceding section described the GX  data 
architecture, consisting of a collection of virtual 
volumes distributed among a collection of aggregates 
owned by different servers in a cluster, and glued 
together to form a single tree-structured global name 
space.  Clients typically access these volumes by 
contacting the server at one of several network 
addresses (typically IP addresses).  A virtual interface
(VIF) is a virtual network card having one or more 
network addresses and a corresponding routing domain, 
bound at any instant to a physical network card.  Virtual 
interfaces migrate to different physical network cards in 
case of failures to links or servers.

This entire collection of virtual volumes accessed via a 
set of virtual interfaces may be virtualized as a virtual 
server.  A virtual server consists of its own set of 
virtual volumes, with one designated as the virtual 
server root, acting as the root of the virtual server’s 
private name space.  A virtual server also contains its 
own set of virtual interfaces, and any operation received 
on a virtual server’s interface is automatically restricted 
to accessing one of the virtual server’s volumes.  In 
effect, this provides GX  with the capability to divide a 
cluster’s resources into isolated sections, with each 
section on its own private subnet, and with users from 
that subnet limited to accessing data in their own 
section, independent of any discretionary access control 
lists that might exist. The alternative to virtual servers 
would be to have multiple clusters. 

3.3 Location Independence and 
Single System Image

A fundamental goal of the GX  architecture is the 
aggregation of a set of servers into a cluster that appears 
externally as a single large server having many volumes 
and many network interfaces through which those 
volumes may be accessed.  A fundamental property of 
these clusters is that any volume can be accessed via 
any interface in the cluster, and any element can be 
managed via any network interface in the cluster (a 
well-defined exception is described in section 3.2).

Location independence provides the core underpinnings 
for transparent and online resource reconfiguration.  
Specifically, volumes can be moved dynamically 
between aggregates and servers in a GX  cluster, and 
these move operations occur completely transparently 

to the clients, moving both data and file lock state 
atomically.

Similarly, the architecture allows virtual interfaces to 
migrate transparently between physical network cards, 
although today’s implementation of VIF migration is 
not completely transparent for certain protocols: CIFS 
users see a TCP connection reset that may be visible as 
a very short lived server failure.  This may be remedied 
by migrating the CIFS TCP connection state before 
doing, at least, a manual VIF failover.

The result is a clustered file system where data can be 
transparently moved between nodes in a cluster, users 
can be transparently moved between nodes in a cluster, 
and in general, the entire system can be reconfigured 
online.  This level of management flexibility is required 
in today’s environments where no suspensions of 
access to storage are permitted, even for adding new 
servers or decommissioning obsolete servers.

4 Namespace

4.1 Overview
The namespace uses ideas from the Andrew Filesystem 
and AFS for constructing a namespace built from a 
collection of storage volumes linked to each other in a 
tree. AFS and the GX  namespace share the following 
properties:

 A consistent view of the namespace is provided 
from any client.

 Different volumes of the namespace tree can come 
from different server nodes on the network (termed 
D-blades).

 Volumes can be moved among nodes without 
disrupting clients or processes on the clients 
holding open files of the migrated volume.

 Volumes can be replicated and replicas distributed 
across the server nodes for purposes of load 
balancing and enhanced data availability.

AFS and GX diverge in that the latter does not require 
special purpose client software to access the namespace 
or to enjoy the properties described above. Instead 
existing file access mechanisms like CIFS and NFS can 
be used.

While AFS maintained its namespace via pointers to 
child volumes stored in the filesystem, GX uses a 
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junction table (maintained in the VLDB). The junction 
table contains mounting relationships, which are 
triples consisting of a parent volume, a child volume, 
and a junction, which is a reference to a directory-like 
file object that exists in the parent volume. The 
junction, identified by its inode and generation 
numbers, serves as the mount point for a child volume. 
A volume, identified by a Master Data Set Identifier 
(MSID), can have multiple junctions in it, each 
corresponding to a mount point in the junction table. A 
child volume can be a parent volume to other child 
volumes. The junction table thus can be thought of as 
table of directed arcs in a graph. 

Some limitations of volume mounting include:

 Only the root directory of a child volume is 
mounted on a parent volume's directory.

 A child volume cannot have multiple parent 
volumes (i.e. there may be no more than one entry 
in the junction table specifying this volume as a
child).

The former limitation exists partly out of expediency 
and partly from the observation that volumes can be 
very small in ONTAP GX (as is the case in ONTAP-
7G) [NetApp]. There's no need to mount subdirectories 
of a volume, when one could instead break a volume 
into several smaller volumes (a procedure which is 
simplified via the use of zero-copy volume cloning). In 
addition, the root of a volume is the obvious place to 
look for a parent volume to which to ascend.

The latter limitation exists to support traversal between 
a child volume and its parent volume as happens with a 
UNIX “cd ..” issued from the root directory of a child 
volume. Otherwise it is not clear which parent volume 
to ascend to. 

When an N-blade gets a request to access an object 
name that is a junction, it checks to see if there is a 
child volume mounted on the junction, instead of 
returning an NFS file handle that contains the MSID of 
the volume the junction lives on, and the fileid and 
generation number of the junction. The N-blade queries 
the junction table, using the MSID of the volume (the 
parent), and the inode number and generation number 
of the junction. If an entry is found, (and there should 
be at most one entry), then the entry has the MSID of 
the child volume, and the VLDB is queried with the 
MSID as a key to find the D-blade in the GX  cluster 
that owns the child MSID.

When a D-blade gets a request to return the inode 
number and generation number of the parent of the root 
of a volume, it indicates to the N-blade that the root of 
the volume has already been reached. This time the N-
blade needs to query the junction table using the child 
volume's MSID as the key. The result of the query is 
either the MSID of the parent volume, and the inode 
number and generation number of the junction the child 
volume is mounted on, or the result is an indication that 
the client is already at the root directory, of the root 
volume, of the namespace tree.

In the event of a D-blade failure, the ability to transit to 
any volume on that D-blade is lost.

The goal of the namespace is to emulate a single 
filesystem. However in some areas the emulation 
breaks down. GX does not support renaming or hard 
linking files across volumes. Other areas of break down 
are described in the next two subsections.

4.2 Considerations for CIFS 
Clients

CIFS supports a form of access control called Access 
Control Lists (ACLs). Each file can have one ACL. 
Each ACL contains one or more Access Control Entries 
(ACEs). An ACE contains a user or group identifier, 
and a bit mask of operations (read the file, delete the 
file, write the file, etc.), specifying whether a user or 
member of the group is to be allowed to perform the 
operation or to be denied the operation, and some flags.  
One flag is the inheritance bit. If this bit is set on a 
directory, then this indicates that any file or directory 
created inside the directory should inherit the ACE.   

An issue is whether ACL inheritance should work 
across junctions.  We considered and rejected two 
possibilities. 

The first possibility is if the junction's parent directory 
has the inheritance bit set, then the ACL should be 
inherited in the child volume, even if the root directory 
of the child volume does not have inheritance set. 

The second possibility is if the root directory of the 
child volume has the inheritance bit set (even if the 
parent directory of the junction of the parent volume 
does not have inheritance set) the ACLs should be 
propagated from the parent volume.  The ability to 
dynamically reconfigure the namespace complicates 
these possibilities − what do we do if a volume is 
remounted under a directory with a different inheritance 
value?
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In the interest of producing the least surprise, we have 
chosen to not inherit ACLs across junctions, regardless 
whether the inheritance bit is set in the parent volume 
or the root of the child volume.

CIFS supports a feature called "Change Notify" where a 
CIFS client can register an interest in being notified 
about changes to the directory or an entire tree of 
directories and files. For applications it arguably makes 
sense for change notify to work across junctions. 
However, because this has the potential to consume 
almost all cluster bandwidth, GX  does not support 
change notify across junctions.

Both ONTAP-7G and GX  support a feature called the 
security style which applies to volumes.  The security 
style indicates whether to use Windows (ACLs), UNIX 
(mode bits), or a mix of the two for enforcing access. 
As in ONTAP-7G, the security style can be assigned 
per volume in GX . However if the security style is not 
specified when a volume is mounted, it will inherit the 
security style of its parent volume.

4.3 Considerations for NFS 
Clients

NFS clients typically run on systems that expect some 
conformance to UNIX semantics. One semantic used by 
UNIX utilities like "cp", and "mv" is to invoke the 
stat() system call on two or more files and use the 
returned inode number to ensure the files are different. 
Among other data, the stat() system call returns the 
inode number of the specified file. Suppose "m" is 
mount point, and "p" is a file in the parent volume, and 
"c" is a file in the child volume. Because the child and 
parent volumes are independent volumes, "p" and "c" 
could very well have the same inode numbers.  In that 
case, "cp p m/c" would fail because the inode numbers 
of the source and target are the same. We considered 
and rejected using the full 64 bits of an NFS version 3 
inode number to encode the MSID and inode number, 
because not all clients, or applications on such clients 
can cope with the upper 32 (or 33) bits of an inode 
number being non-zero.  Instead, we borrow the AFS 
idea of computing a hashed inode number using the 
file's volume's MSID and the file's inode number as 
input. This computed inode number is used only for 
replies to GETATTR (get attribute) requests; the NFS 
file handle uses the real inode number.

We found that some NFS clients had problems when 
the link count of a directory did not exactly equal the 
number of child directories plus the entries for "." and 

"..".  This was caused by a junction in a directory not 
increasing the link count. We now implement junctions 
as objects that behave like directories in all ways, 
except that permissions for search, read, and write are
denied to all. This way, directory properties like 
increasing the link count of its parent directory are 
preserved.

4.4 Snapshots
WAFL snapshot semantics continue to be supported in 
GX  with some ramifications for the global namespace
[Hitz]. Supporting coordinated snapshots among 
volumes distributed among several D-blades would be 
desirable, and theoretically possible (if difficult).
Snapshot coordination is currently not part of GX 
architecture because coordinating snapshots across all 
volumes of an arbitrarily-sized namespace cannot scale. 

The magic “.snapshot” directory is omnipresent in GX, 
but because snapshots are not coordinated, the system 
denies clients the capability to navigate from a snapshot 
of a parent directory into a snapshot of a child volume. 
The reason is illustrated by an example. At time T a 
snapshot of parent volume A is taken, at T+1, child 
volume B is unmounted from A, and C is mounted 
where B was, at T+2 a snapshot of C is taken, and at 
T+3, the user unexpectedly encounters a snapshot of 
volume C instead of a snapshot of B.

5 SpinNP
The GX cluster is connected by a family of message-
passing protocols called SpinNP.  SpinNP is a layered 
system that defines a session and operations layer, and 
that specifies the requirements of its underlying 
transport layer. SpinNP is used for all high-traffic 
message passing within the cluster, both between N-
blades and D-blades, as well as between different D-
blades.

In developing SpinNP, we were motivated by the need 
for a RPC protocol with a tightly integrated session 
layer.  We took a holistic approach to the design of 
SpinNP, which gave us the ability to assign function to 
the transport, session, and application layers as needed.  
We were able to build security, flow control and 
versioning features in from the ground up, and to design 
a protocol that can be run over multiple different and 
commonly available transports.

5.1 Transport Requirements
SpinNP sessions are layered over a network transport.  
Any transport can be used as long as it provides a 
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connection-oriented protocol that provides reliable 
delivery of completely framed messages.  We built a 
transport called RC, which is a simple message framing 
layer over UDP.  The framing is required to delimit 
SpinNP messages on a byte stream protocol such as 
TCP. We also implemented other transports, including 
a memory-to-memory transport which is used only in 
the case of local communication between two blades 
which are co-located on the same cluster node.  It is 
also possible to implement a transport over the PCI or 
other I/O buses.

Each transport provides an abstraction of one or more 
connections.  Connections are simply pipes through 
which we can feed messages.  Connections supply 
resource-limited flow control at the level of individual 
messages.  More than one connection can be in 
operation simultaneously between the same pair of 
communicating entities.

The transport must be robust enough to inform the 
session layer when a connection has been lost.  Timely 
notification of connection loss is important to speed 
session recovery.

5.2 Sessions
SpinNP sessions provide: strong security based on the 
GSS_API [Linn]; outer level flow control; the 
capability of exactly-once message delivery; strong 
major and minor versioning support; and multiple 
message priority channels per session.

SpinNP operations are RPC-like, and consist of one 
request message and a corresponding response message 
that is returned from the receiver to the sender of the 
request.  SpinNP sessions support a bi-directional 
request flow and corresponding response flows in the 
opposite directions.  Each SpinNP session is layered 
over at least three connections, one each for message 
priority levels low, medium and high.  Low priority is 
used for normal request and response traffic.  Medium 
priority is used for callback requests and responses.  
High priority is used for normal requests that are 
performed as a result of a callback.  An example is the 
data flushes that occur after a file delegation is revoked 
by a callback.

The session is initially formed by the exchange of a 
SpinNP _CREATE_SESSION request and response.  
This request and response have distinguished values in 
their first bytes, which allow negotiation of the overall 
SpinNP protocol level.  Once a mutually agreed-upon 
base protocol version has been established, the 
connection is authenticated by the exchange of GSS 

tokens.  This follows the normal GSS sequence of 
security context creation (GSS_Init_Sec_Context), data 
protection and/or encryption (GSS_Wrap), and context 
destruction   (GSS_Delete_Sec_Context).  SpinNP has 
session level operations for each of these GSS 
commands.  Session initialization also requires the 
negotiation of a set of operational protocols, called 
interfaces, which actually perform the operations that 
implement scalable file services within a cluster.  Each 
interface consists of a set of operations, each defined by 
a request and response message pair.  One of the 
primary interfaces is the file operations interface, which 
is used primarily between the N-blades and D-blades to 
implement network file system operations.

Each interface is separately versioned, independently of 
the base protocol.  The base protocol version is 
negotiated during the exchange of the first two request 
and response messages.  If agreement is reached on a 
mutually acceptable version, the session negotiation can 
be completed.  This establishes the content of the 
message headers, as well as the content of a special set 
of requests and responses, called the session operations 
interface.  These operations are used to perform 
GSS_API session initiation, and other SpinNP session 
negotiations.

The GSS_API is used not only to authenticate each 
participant in the session to the other over the initial 
connection, but also to authenticate each additional 
connection that is bound to the session.  This is 
accomplished by the exchange of a pair of challenge-
response tokens over the newly established connection.  
This exchange must complete before the connection can 
be bound to the session.

SpinNP sessions implement request level flow control.  
This limits the number of requests that can be 
outstanding in any session.  The flow control combines 
slotted and sliding window techniques.  Each session 
consists of a number of channels.  Each channel has a 
sliding request window.  Within a channel, requests are 
assigned sequence numbers.  If the window size is n, 
the request with sequence number i+n cannot be issued 
until the response has been received for all requests 
with sequence number less than or equal to i.  This 
ensures that a number of requests can be in-flight at the 
same time, allowing a high degree of concurrency.  
However, the sliding window is vulnerable to a single 
long-running request holding up the entire channel.  To 
reduce the likelihood of this happening, SpinNP allows 
the creation of multiple channels for each session.  Each 
channel has its own sliding window, and so if one 
channel becomes blocked, requests can still be sent 
over another channel.  The end-to-end windowing 
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allows the receiver to apply back-pressure on the 
request channels.

There are three priority levels of channels in a session: 
high, medium and low.  There is no direct binding of 
channels to particular connections, except that the 
following rules are applied to select a connection on 
which to send a message.  Low priority requests and 
responses are restricted to the low priority channels and 
are sent over low priority links.  Medium priority 
messages are sent over the medium priority channel, 
and can be sent over either the medium or low priority 
connections.  Similarly, high priority messages are sent 
over the high priority channel, but can then be 
transmitted over any of the connections, high, medium 
or low priority. 

Sessions implement an at-most-once semantic, and will 
not tolerate lost messages from the transport layer.   
Should the transport layer fail to deliver a message, the 
session layer can trigger session recovery, which will 
attempt to construct a new session to replace the failed 
session.  It is expected that the transport will retry 
sending the message until it determines that it is not 
possible to send the message.  At this point, the 
transport will inform the session layer that a message is 
undeliverable, and the session will be reset.

5.3 File Operations
The most important SpinNP interface is the File 
Operations interface.  The requests in this interface 
support the CIFS and NFS network file operations.  
Incoming CIFS and NFS messages are translated by the 
N-blade to SpinNP messages, which are in a common 
format independent of the original source format.  
SpinNP file operations support all the normal CIFS and 
NFS file access operations, as well as locking 
operations.

SpinNP file operations are designed to encompass the 
semantics of both CIFS and NFS, including NFS 
versions 2, 3 and 4.  It does this without relying on an 
indicator in the request of what the source protocol was.  
(Such an indicator is included in each request, but is 
only used for statistics gathering, quality of service 
monitoring, and failure diagnosis.)  This requires that 
all expected responder behaviors be specified directly 
in the protocol.  For example, the protocol requires that 
file names be accompanied by a set of flags that 
indicate whether case sensitive or case insensitive 
naming applies.  Much of the challenge of 
implementing a server is to ensure correct operation 
under arbitrary source protocols without relying on the 
identification of the specific source protocol.  An 

additional challenge is to select the correct behavior 
when the semantics of two clients, using different 
network file service protocols, conflict.  Such conflicts 
are usually resolved consistently, by conventions 
favoring one or the other source protocol.

The file operations support all NFS and CIFS 
semantics, including CIFS oplocks and NFSv4 
delegations.  To support these features and others, a set 
of file callback operations is also defined.  File 
callbacks flow from the D-blade to the N-blade, which 
relays them to a client, which in turn responds to the N-
blade, which in turn responds to the D-blade.  These 
callback operations are used to set the client state, for 
example, to recall a file or directory delegation.  Such 
operations are necessary to ensure that the server 
maintains control over its resources and to give the 
server the ability to inform the client when it is 
expected to synch cached updates.

The full set of SpinNP file operations resembles NFS, 
and is listed below. With few exceptions (e.g. WATCH 
is for setting up change notify, and is specific to CIFS)
NFS and CIFS requests can be handled with the same 
operation. The specifics of NFS or CIFS semantics are 
specified via flags and parameters in each request. E.g. 
WRITE includes a flag to support CIFS called 
RSRV_AT_EOF which directs the D-blade to reserve 
extra disk space for the file whenever a write is done 
that extends the size of the file. 

Table 1 – SpinNP File Operations

NULL READDIR
ACCESS READLINK
CLOSE REMOVE
CREATE RENAME
DISCARD_CRED SCAN_MATCHING_LOCKS
DOWNGRADE SCAN_FILE
FH_TO_PATH SETATTR
FOLD_FILE SET_CRED
GETATTR SHARE
GETATTR_BULK UNLINK
GET_CRED UNSHARE
GET_PARENT WATCH
GET_ROOTFH WRITE
LINK
LOCK call  back operations
LOCK_GRANTED_ACK NULL
RECLAIM_LOCKS_ACK LOCK
LOOKUP MOVE_LOCKS
MOVE_LOCKS NOTIFY
OPEN RECALL_LOCK
PREFETCH RECLAIM_LOCK
READ RETRY

While we originally planned to build a replay cache 
into the SpinNP session layer, we discovered we could 
achieve better end-to-end resiliency by building a 
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replay cache in the SpinNP file operations layer, and 
that this can also provide the functionality required in 
an NFS response cache.  It proved to be simpler and 
more effective to provide a single end-to-end solution 
than to chain together multiple links protected by 
different replay caches.

5.4 SpinNP IDL
We created a new interface description language (IDL) 
for SpinNP.   This IDL has features that facilitate direct 
compilation of marshalling and unmarshalling code 
from the SpinNP specifications.  The IDL relies heavily 
on two variable structures.  The first is the switch, 
which selects variable fields from one of several 
alternatives.  The switch is comparable to a C union;
however, the selection of a branch is explicitly 
determined by a discriminator which is the first element 
of the switch construct.  The total size required by a 
switch is determined by the selected branch, not by the 
size of the largest possible branch.  The other is the 
collection, which can select any number of variable 
fields, specifying which fields are selected by a bitmap 
specification which appears at the beginning of the 
collection.

Examples of a switch and a collection from the SpinNP 
file operations specification are:

  struct fileop_req_msg_body_t {
   src_protocol_t src_protocol;
   fileop_request_flags_t fileop_flags;
   cred_t cred;
   switch (fileop_proc_num_t proc) {
      case NULL_FILEOP:
        null_fileop_req_t null_fileop;
      case ACCESS:
        access_req_t access;
      …
   } s;
 };

 collection file_attr_t 
      (file_attr_types_t fa_type) {
   case FA_CHANGE:
     uint64_t fa_change;
   case FA_SIZE:
     uint64_t fa_size;
   …
 };
The SpinNP IDL is strongly typed, which facilitates 
compilation of code directly from the specification.  We 
developed an IDL compiler to build C, C++, Perl and 
Ethereal code all from the same input file, which is the 
written specification of the interface.  Having an exact 
match between the protocol specification and the code, 
including Ethereal descriptions, significantly sped 
development [Lamping].

One of the most important features of the SpinNP IDL 
is its strong support for versioning.  It is possible to 
annotate a single copy of a SpinNP interface 
specification document so that multiple versions of the 
protocol can be specified by the same document.  This 
gives a clear indication of the development of the 
protocol, and ties directly into the interface compiler, 
which generates marshalling and unmarshalling code 
that is aware of the differing contents of each version. 

6 System Management
System management in the ONTAP GX  system is 
responsible for maintaining the illusion that a GX
cluster is a single system, even as new servers join the 
cluster, old servers are removed from the cluster, data is 
migrated between aggregates, and network addresses 
migrate between physical network cards.

Management is also responsible for ensuring that a 
large cluster hides the failures of internal components, 
so as to give the appearance not only of a 
reconfigurable cluster, but a cluster that never stops 
providing service.

The rest of this section describes the details of GX  
system management.

6.1 Replicated Database
The heart of the system management software is the 
replicated database, RDB. While RDB (not to be 
confused with Oracle’s RDB) is mostly a new design, it 
uses some ideas from the "ubik" library used by AFS.

Databases built atop RDB store all cluster wide 
configuration information, including the location of all 
the cluster’s virtual and physical resources, and the 
state of any long-running tasks that need to survive the 
failure of any given node. Each replica of an RDB 
database is guaranteed to be equivalent. 

RDB provides two significant types of functionality.

First, it provides an election mechanism, used to elect a 
coordinator for updates to the underlying database.  All 
updates to the database are funneled through this 
elected master, allowing a relatively straightforward 
implementation of the database.  In addition, the elected 
master can perform application specific tasks that 
require at most a single instance to run successfully.  
For example, the elected master for the virtual interface 
manager also runs the single instance of the task that 
moves virtual interfaces between physical network 
cards in the event of a link or node failure in the cluster.  
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Because a new election is performed after a node 
failure, RDB can keep a database application running in 
the face of multiple node failures.

Second, RDB provides a transactional database facility 
allowing structured records to be atomically added to 
any system management databases.  RDB databases are 
replicated among a set of machines in the cluster 
(referred to as a “ring”).  Currently, all machines in the 
cluster are in the RDB ring, and updates can be 
performed to the database as long as a majority of the 
servers in the ring are operational.  A proper majority is 
required to unambiguously resolve the case where a 
network partitions. As RDB transactions are created, 
they contact the master for an (epoch, transaction ID) 
pair.  The transaction ID is essentially a transaction 
count since the last time the cluster changed 
masters.  The epoch is a sequence number of the 
number of times the master changed.  Thus, by sorting 
on epoch and then ID, we get a global ordering of 
transactions in a cluster.

GX and RDB do not guarantee that the state of a 
database will be the same for the duration of an 
operation on a cluster. For example if a volume is one 
D-blade when a CIFS request arrives to file on the 
volume, the volume could move when the N-blade 
issues a SPINNP request. The N-blade would get an 
error indicating the volume has moved, and re-consult 
RDB for the volume’s new D-blade.

A number of the databases built on top of RDB are 
discussed below.

6.2 Volume Location Database
The volume location database (VLDB) is an RDB 
replicated database. The VLDB stores a number of 
tables used by N-blades and the system management 
processes to locate – in several steps - the D-blade
corresponding to a particular volume.  First, the volume 
is mapped to the aggregate that holds the volume.  
Second, because ownership of entire aggregates can be 
passed from one system to another, as in the case of 
system failure, the aggregate ID is mapped to a D-blade
ID.  Third, the D-blade ID is mapped to its network 
addresses via another RDB-based database, part of the 
VIF manager, described below.  In addition, if a 
junction is encountered, the N-blade consults the 
junction table (kept in RDB, as described in section 4), 
to find the mounted child volume. Note that all of these 
mappings are composed and cached in the N-blade’s 
memory, so that the results of all four lookups are 
typically available after a single hash table lookup.

The contents of each of these tables change during 
certain operations.  When a volume is moved between 
servers, or between aggregates on the same server, the 
volume is first moved, and at the very end, the VLDB is 
updated to indicate that the volume has a new home 
aggregate.  If a server in a storage failover partnership 
(where two D-blades share access to same set of disks 
and can takeover from each other in event of failure)
fails, the surviving server updates the VLDB’s 
aggregate to D-blade mapping, so that all of the N-
blades in the system know where to find the aggregate.  
And if a system administrator changes the network 
address of an N-blade or D-blade, the blade’s cluster IP 
address set is updated in the VIF manager’s database as 
well.

6.3 Virtual Interface Location
Database

The Virtual Interface (VIF) location database is 
managed by an active RDB process called the Virtual 
Interface manager (the VIF manager).  The VIF 
manager is responsible for tracking which virtual 
network interfaces are associated with which physical 
network cards in the cluster, and ensuring that, should a 
server fail, that the IP addresses associated with the 
failed VIF are moved to an acceptable backup network 
card.

It is obviously important − regardless of what type of 
failures occur − that a given VIF is exported by no 
more than one physical network card at any instant.  To 
provide this guarantee, VIFs are divided into two 
classes, fixed VIFs, which never migrate to other 
systems, even upon link or host failure, and moveable 
VIFs, which can be moved between servers in a cluster.  
If a cluster loses more than half of its servers, the RDB 
database will be unable to elect a master, and every VIF 
manager will see, after a small timeout, that it is no 
longer in contact with the RDB master for this database.  
When this occurs, all moveable VIFs are torn down, 
since the VIF manager can not distinguish between a 
majority of the servers in a cluster being down, and a 
network partition, where the master VIF manager 
process is simply no longer reachable from the local 
VIF manager.  In the latter case, however, the VIF 
manager will likely reassign the moveable VIFs to 
another system, and to avoid having a cluster with 
duplicate IP addresses from different ports, a VIF 
manager that can’t contact the VIF manager RDB 
master must tear down its moveable VIFs.  Because 
fixed VIFs can never migrate to other servers, these 
VIFs can continue operation even after loss of contact 
with the RDB master, and indeed, this is the sole reason 
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for the distinction.  Of course, it is very rare for a 
cluster to lose more than half of its servers; typical 
failure modes are single server failures and network 
partitions, where a majority of servers remain in contact 
with each other.

6.4 System Management
Framework

The system management framework provides 
administrative interfaces to the cluster.  It is based upon 
the eponymously named SMF from Marconi 
Corporation. The system management framework
generates a web user interface, command line interface 
and SNMP tables based upon a set of tables provided as 
input.

The commands invoked by this framework update 
configuration state stored in RDB, and thus mirrored to 
all servers in the cluster.

6.5 Job Controller
The job controller module is a part of the system 
management framework that provides support for long 
running operations that need to be restarted or cleaned 
up after a server failure.

The job controller provides RDB-based stable storage 
to keep track of the progress of a job.  For example, a 
volume move operation is a complex multi-step 
operation with significant temporary state that must be 
cleaned up in the event of an error.  A volume move 
begins by creating a volume on the destination server 
and creating a snapshot at the source server.  The 
contents of the snapshot are then propagated to the 
empty volume at the destination.  The snapshot 
propagation cycle is repeated several times and finally 
the VLDB is updated to point to the volume’s new 
location.  With this implementation, it is clear that if a 
crash occurs during the move, significant clean up must 
be performed before the operation can be restarted.  The 
job controller provides a straightforward mechanism to 
ensure that the cleanup operations are invoked and the 
job restarted.

7 False Starts
The original design of junctions included the MSID of 
the child volume. This would have complicated data 
protection logic. For example, a volume might be
backed up, and then the volume or subset thereof 
restored in a different place in namespace. Without 
additional logic, the restored volume would contain 

junctions pointing to child volumes that existed in other 
parts of the namespace.

The SPINNP protocol conveys semantics in a file 
access protocol independent manner. In most cases, the 
cost of this generality is nominal. However, when the 
D-blade converted READDIR results from WAFL to 
SPINNP, and the N-blade converted SPINNP 
READDIR results to NFS READDIR results, the CPU 
overhead was significant. We extended SPINNP to 
support NFS formatted READDIR results, and gained 
about 5% throughput using the benchmark described in 
the next section.

8 Performance

8.1 Overview
The system's performance characteristics derive from 
the division of the file service process into separate 
protocol termination and disk service modules (the N-
blade and D-blade modules, respectively).  As 
described in section 3.1, the high performance path 
consists of client requests traversing an N-blade routing 
across the cluster network and terminating at the 
appropriate D-blade (as illustrated in Figure 2).

The resources that drive performance include the 
clients’ networks, N-blade CPU and memory 
bandwidth, cluster network, D-blade CPU and memory 
bandwidth, and disk bandwidth. For typical NAS access 
patterns, we find the CPU balances across the N- and 
D-blades. A zero-copy networking stack removes the 
memory bandwidth bottleneck. Disk subsystem delays 
are ameliorated by adequate memory cache, including 
NVRAM to minimize latency of writes, on the D-blade.

8.2 Scaling
From a data traffic perspective, each N-blade is acting 
as no more than a switch to one of several other D-
blades, which simplifies the analysis of the scaling 
limits of GX.

The performance of a node in a cluster (in operations
per second) will be:

operationsremoteofeperformanc

operationslocalofeperformanc

___

___



Where performance_of_local_operations is the 
performance of operations received by an N-blade that 
go to the D-blade that exists on the same node, and 
performance_of_remote_operations is the 
performance of operations received by the N-blade that 
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go to D-blades that are not one the same node as the N-
blade.

Assuming each N-blade receives an equal share of load 
from external clients, and assuming each N-blade 
evenly switches its received load to each D-blade, then 
among the D-blades, each D-blade is processing the 
same load. Let P be the performance of a single node 
cluster. Then in an N node 
cluster NPoperationslocalofeperformanc /___  , 
and ENNPoperationsremoteofeperformanc  /)1(___ , 
where E is the performance efficiency of remote 
operations. Thus the expected performance of a cluster 
of N nodes is:
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8.2.1 Scaling Results

To measure scaling, we used the SPEC SFS91_R1 V3.0 
benchmark* to generate a standard workload of NFS 
(version 3) operations/second [Capps]. We present SFS 
numbers, because the SFS workload has a mix of I/O 
and metadata operations (both modifying and non-
modifying) and is derived from some real customer 
workloads. SFS has uniform access rules that require 
no partitioning of data among the devices that comprise 
the system under test. Thus the SFS matches the 
assumptions listed in the previous section.

We rarely run large cluster performance benchmarks 
because of the labor and capital costs and because 
we’ve found that setting up a two-node cluster, and 
configuring the benchmark to direct 100% of each N-
blade’s SpinNP traffic to the other (remote) D-blade is 
a sufficient predictor of how the large cluster will scale. 
As a result, we have just two large cluster figures to 
offer. 

On a single mid range cluster node we achieved about 
20,900 operations/second. On the two node “100% 
remote” cluster we achieved about 17,900 
operations/second. Note that neither of these runs were 
compliant from SPEC’s run rules, because the goal was 
to determine the maximum throughput, not to produce a 

                                                
*

SPEC TM and the benchmark name SPECsfs97_R1 TM   are 
registered trademarks of the Standard Performance Evaluation 
Corporation. For the latest SPECsfs97_R1 benchmark results visit 
www.spec.org (or more specifically: www.spec.org/osg/sfs97_R1).

compliant run. Thus, fewer than the required 10 “load 
points” were attempted with each single node run (see 
page 55 of   [SPEC]). From the single node and “100% 
remote” runs we derive an expected efficiency of 
85.6%.  A 20 node cluster achieved about 318,000 
operations/second versus an 
expected_performance_cluster(20) value of 360,000 
operations/second. We did not have the same number of 
disk drives per node in the 20 node cluster as in the one 
and two node cluster, and believe that accounts for the 
discrepancy. We did not re-run with more drives 
because we were aiming for a much higher number.

Using our “high end” cluster node, a 24 node cluster 
configuration measured 1,032,461 SPECsfs97_R1.v3 
operations per second, (with a corresponding overall 
response time of 1.53 milliseconds; for a definition of 
overall response time, see pages 55-56 of [SPEC]). 
Each node had three one gigabit/second Ethernet
controllers, one for handling client traffic, two for the 
cluster interconnect. We do not have single node and 
100% remote two cluster node numbers for the same 
software version on the high end node. However, 
several months after the 24 node run was published at 
SPEC’s web site, we measured the high end single node 
at about 55,000 operations/second, and each node of the 
100% remote two-node cluster at about 41,000 
operations/second per node. The expected efficiency is 
about 75%, and expected_performance_cluster(24) = 
1,003,750 or below 2.8% of actual results. 

8.3 Load Balancing
In any collection of systems intended to service a 
common pool of clients, balancing load across the 
collection is an important consideration. We discuss 
two techniques used to address the problem.

8.3.1 Rebalancing Load
A fallacy of the previous section is the assumption that 
loads to the cluster or inside the cluster will be 
balanced. Because hot spots are a reality, GX offers two 
axes for balancing load. 

The first axis is the ability to transparently migrate 
volumes among D-blades. With this capability, a given 
D-blade, and indeed a given set of disks, need not be a 
hot spot. Since volumes can be made arbitrarily small 
(while still being dynamically expandable), then, 
subject to the maximum file size needs of the 
application, one can create many small volumes that 
can be independently moved around the cluster as 
frequently as needed. The smaller the average volume 
size, the faster it can be moved in reaction to a load 
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imbalance and the easier to find a D-blade with 
sufficient spare cycles to service it. 

The second axis is the ability to transparently migrate 
virtual network interfaces (VIFs) from one N-blade to 
another. The more VIFs a cluster has, the easier it is 
balance load across N-blades. Each N-blade has
multiple VIFs, perhaps even multiple VIFs that refer to 
the same namespace. As the number of VIFs 
approaches the number of external clients, or the even 
the number of unique client source network addresses 
(for clients with multiple interfaces), the flexibility to 
respond to clients that dominate the capacity of a single
N-blade improves. The clients that are using a VIF on 
an N-blade can be migrated by moving the VIF to an N-
blade that has less load.

8.3.2 Load Balancing Mirrors
The root volume of a namespace, if not mirrored, 
becomes a performance bottleneck even if the traffic is 
mostly LOOKUP operations. To prevent the D-blade 
that holds the root volume of the namespace from being 
a bottleneck, a best practice for GX  is to have a read-
only load balancing (LB) mirror of the root volume of 
the namespace on each D-blade of the cluster. Each 
mirror is created via an asynchronous volume 
SnapMirror operation, which is similar to the 
asynchronous VSM feature in ONTAP-7G [Patterson].
This way, any read-only external client request (CIFS, 
NFS, etc.) that accesses the root volume can be serviced 
from any D-blade. Since external client requests arrive 
at N-blades, and since each N-blade will tend to have a 
local D-blade on the same node, the external request 
can be serviced locally, rather than being serviced by a 
D-blade that is on another node.

The set of load balancing mirrors, plus the writeable 
master volume, is collectively called a volume family.  
Each member of a volume family has a unique data set 
identifier (DSID), but each member shares the same 
MSID. This way, NFS requests can be routed to any 
available load balancing mirror for an MSID that 
appears in the request's NFS filehandle.

If a volume is a load balancing mirror, clients are 
permitted to access and modify the writeable master, 
but only if the access path is prefixed by the component 
"/.admin". Note that whether a volume in the path has a 
load balancing mirror is immaterial; the writeable 
version of the volume is always accessed. The ".admin" 
component is not quite a magic directory like WAFL's 
".snapshot": 

 It only appears at the root of the namespace.

 For NFS, only mount operations see it; NFS file 
and lock operations do not. 

Thus if an NFS client mounts "/", and then tries to "cd" 
to ".admin" the LOOKUP will fail. Whereas, if the NFS 
client mounts a path starting with "/.admin", all access 
will be via the writeable masters for each volume 
family. GX  accomplishes this by using one bit in the 
NFS file handle to indicate whether the writeable tree 
prefixed by "/.admin" is to be used or not.

Even though ".admin" appears at the root of the 
namespace this does not mean only the root volume in a 
namespace can have load balancing mirrors. Any 
volume can have load balancing mirrors. The writeable 
master of a volume family is always reachable by a path
that starts with "/.admin".

If a writeable master is modified, a client accessing the 
volume through the normal path will not see the update 
until the system administrator directs the propagation of 
the updates to the load balancing mirrors.

8.4 Cluster Expansion
Ultimately, even with a perfectly balanced load, the 
aggregate load can exceed the cluster's capabilities. GX
allows one to add nodes to the cluster, and thus provide 
new, idle places, to which to migrate load.

Nonetheless, expansion and migration will not suffice 
for all types of loads. A single volume can potentially 
experience more demand than the load capability of a 
single D-blade. A future version of GX will allow 
volumes to stripe across D-blades.

The problem of a single client outstripping an N-blade, 
or an N-blade's physical network interfaces is harder to 
solve, and ultimately requires external clients both 
capable of network trunking, and knowing the striping 
in the case of striped volumes.

9 Experiences with GX
We summarize the experiences of three customers who 
use GX today.

The first customer – a provider of computer generated 
special effects for motion pictures - found that GX and 
its predecessor from Spinnaker provided the only 
storage solution capable of supporting its rendering 
load. Via the transparent volume move feature, the 
customer rebalanced storage usage across its GX nodes, 
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and achieved average storage capacity utilization of 
nearly 90%, adding storage as needed.

The second customer is a supercomputing center 
supporting the information technology needs of 
scientists and other academic researchers. The customer 
uses a six node GX cluster for storing results of 
workloads and for user home directories with data 
consisting of mainly small files. The cluster handles 
bursts of data of up to 600 megabytes/second of mostly 
NFS traffic with some CIFS. 

The third customer is a semiconductor manufacturer 
with a four node cluster. A single attached client can 
achieve 250 megabytes/second reading or writing, and 
with a 75/25 % mix of read and write, a single client 
achieves 650 megabytes/second. From 224 clients, an 
aggregate 800 megabytes/second write speed was 
measured, and aggregate gigabyte/second read (direct 
I/O) speed was seen, and using the 75/25 % mix 1.2 
gigabytes/second read/write speed was achieved. 

10 Conclusions
Data ONTAP GX provides many of the best features of 
previous scalable namespace file servers.  It does this 
through widely deployed network file system protocols, 
including NFS and CIFS, avoiding changes to client 
software.  The architecture translates file access 
requests to a common backend protocol that is used for 
all high-traffic communication within the cluster. This
simplifies the implementation of the backend data 
server modules.  The entire cluster is administered 
through a single interface, and administration is 
implemented through a number of cluster services.  
Performance scalability is linear, achieving a rate of 
over one million NFS operations per second on a 24 
node cluster.

11 Acknowledgements
We thank Rich Sanzi, Darren Sawyer, Margo Seltzer, 
and five anonymous reviewers (provided by USENIX) 
for their constructive critiques of several drafts of this 
paper; and Dennis Chapman and Tianyu Jiang for 
information on customer experiences.

12 References
[Anderson] Anderson, D. et al,  “Interposed Request 

Routing for Scalable Network Storage ACM 
Transactions on Computer Systems, vol 20, no 1, 
Feb 2002

[Campbell] Campbell, R., “Managing AFS: Andrew 
File System,” ISBN 0-13-802729-3, 1998.

[Capps] Capps, D., “What’s new in SFS 3.0”, NFS
Conference, 2001.

[Hitz] Hitz, D. et al, “File System Design for an NFS 
File Server Appliance,” USENIX Conference 
Proceedings, 1994.

[Howard] Howard, J. et al, “Scale and Performance in a 
Distributed File System,” ACM Transactions on 
Computer Systems, Vol. 6, No. 1, 1988.

[Kazar1990] Kazar, M. et al, “DEcorum File System 
Architectural Overview,” USENIX Conference 
Proceedings, 1990.

[Kazar2002] Kazar, M., “High Performance and 
Distributed NAS Server Architecture for Scalable 
and Global NFS file systems,” NFS Industry 
Conference, 2002. 

[Kleiman]  Kleiman, S., "Vnodes: An Architecture for 
Multiple File System Types in UNIX," 
Proceedings of the USENIX Conference, 1986.

[Lamping] Lamping, U. et al, “Ethereal User’s Guide,” 
http://www.ethereal.com, 2005.

[Linn] Linn, J., “Generic Security Service Application 
Program Interface Version 2, Update 1”, RFC 
2743, Internet Engineering Task Force, 2000.

[NetApp] Network Appliance, Inc., “Introduction to 
Data ONTAPTM 7G,” TR 3356, 2005.

[Neuman] Neuman C., “The Kerberos Network 
Authentication Service (V5)”, RFC 4120, Internet 
Engineering Task Force, 2005.

[Patterson] Patterson, H. et al, “SnapMirror®: File 
System Based Asynchronous Mirroring for 
Disaster Recovery,” USENIX Conference on File 
and Storage Technologies Proceedings, 2002.

[SPEC] Standard Performance Evaluation Corporation, 
“SFS 3.0 Documentation Version 1.1,” 2001.

[SNIA] “Common Internet File System Technical 
Reference,” Storage Networking Industry 
Association, 2002.

[Sun] Sun Microsystems, “NFS: Network File System 
Protocol Specification,” RFC 1094, Internet 
Engineering Task Force, 1989.

[Thekkath] Thekkath, C. et al, “Frangipani: a scalable 
distributed file system,” Proceedings of the 
Sixteenth ACM Symposium on Operating Systems 
Principles, 1997.


